VEHICLE TRACKING AND LOCKING BASED ON GPS AND GSM

¹D.Thirumurugan, ²S.Vinoth Balaji, ³P.Senthil Kumar, ⁴M.Sudhakaran ^{1,2}Dept of EEE, GTEC, Vellore, India ³Asst. Prof, Dept of EEE, GTEC, Vellore, India ⁴Associate Prof, Dept of EEE, GTEC, Vellore, India

Abstract:

Currently almost of the public having an own vehicle, theft is happening on parking and sometimes driving insecurity places. The safe of vehicles is extremely essential for public vehicles. Vehicle tracking and locking system installed in the vehicle, to track the place and locking engine motor. The place of the vehicle identified using Global Positioning system (GPS) and Global system mobile communication (GSM). These systems constantly watch a moving Vehicle and report the status on demand. When the theft identified, the responsible person send SMS to the microcontroller, then microcontroller issue the control signals to stop the engine motor. Authorized person need to send the password to controller to restart the vehicle and open the door. This is more secured, reliable and low cost.

Key words— Vehicle Tracking, Locking, Microcontroller, GPS, GSM

1. INTRODUCTION

In the last few decades, India has progressed at such an enormous rate that many companies have strongly established themselves here. These companies bring a huge amount of workforce with them. Arranging transportation to such a huge mass is a cumbersome task involving many intricacies. Generally, this transport is arranged through the local transport vendors on a yearly contract basis, recently happen mishaps such as burglary, rape cases etc. The development of satellite communication technology is easy to identify the vehicle locations. Vehicle tracking systems have brought this technology to the day-to-day life of the common person. Today GPS used in cars, ambulances, fleets and police vehicles are common sights on the roads of developed countries. All the existing technology support tracking the vehicle place and status The GPS/GSM Based System is one of the most important systems, which integrate both GSM and GPS technologies. It is necessary due to the many of applications of both GSM and GPS systems and the wide usage of them by millions of people throughout the world [1]. This system designed for users in land construction and transport business, provides real-time information such as location, speed and expected arrival time of the user is moving vehicles in a concise and easy-to-read format. This system may also useful for communication process among the two points. Currently GPS vehicle tracking ensures their safety as travelling. This vehicle tracking system found in clients vehicles as a theft prevention and rescue device. Vehicle owner or Police follow the signal emitted by the tracking system to locate a robbed vehicle in parallel the stolen vehicle engine speed going to decreased and pushed to off. After switch of the engine, motor cannot restart without permission of password. This system installed for the four wheelers, Vehicle tracking usually used in navy operators for navy management functions, routing, send off, on board information and security. The applications include monitoring driving performance of a parent with a teen driver. Vehicle tracking systems accepted in consumer vehicles as a theft prevention and retrieval device. If the theft identified, the system sends the SMS to the vehicle owner. After that vehicle owner

sends the SMS to the controller, issue the necessary signals to stop the motor. In this paper, the reviewed related technology.

2. RELATED WORK

In [2], the hardware and software of the GPS and GSM network were developed. The proposed GPS/GSM based System has the two parts, first is a mobile unit and another is controlling station. The system processes, interfaces, connections, data transmission and reception of data among the mobile unit and control stations are working successfully. These results are compatible with GPS technologies. In [3], a vehicle tracking system is an electronic device, installed in a vehicle to enable the owner or a third party to track the vehicle's place. This paper proposed to design a vehicle tracking system that works using GPS and GSM technology. This system built based on embedded system, used for tracking and positioning of any vehicle by using Global Positioning System (GPS) and Global system for mobile communication (GSM). This design will continuously watch a moving Vehicle and report the status of the Vehicle on demand. In [4], Face Detection System used to detect the face of the driver, and compare with the predefined face. The car owner is sleeping during the night time and someone theft the car. Then Face Detection System obtains images by one tiny web camera, which is hidden easily in somewhere in the car. Face Detection System compared the obtained images with the stored images. If the images don't match, then the information sends to the owner through MMS. The owners get the images of the thief in mobile phone and trace the place through GPS. The place of the car and its speed displayed to the owner through SMS. The owner can recognize the thief images as well as the place of the car and can easily find out the hijackers image. This system applied in our day-to-day life. In [5], this system provided vehicle cabin safety, security based on embedded system by modifying the existing modules. The constructed standalone visual tracking system validated in real road tests. The results provided information of collision warning in urban artery with speed about 60 km/hour both at night and day times. In [7], the remote monitoring system based on SMS and GSM was implemented. Based on the total design of the system, the hardware and software designed. In this paper, the GSM network is a medium for transmitting the remote signal. This includes two parts that are the monitoring center and the remote monitoring station. The monitoring centers consist of a computer and communication module of GSM. The software-monitoring center and the remote monitoring station implemented by using VB. The result of this demonstration shows that the system can watch and control the remote communication between the monitoring center and the remote monitoring station.

3. PROPOSED METHOD

In this proposed work, a novel method of vehicle tracking and locking system used to track the theft vehicle by using GPS and GSM technology. This system puts into sleeping mode while the vehicle handled by the owner or authorized person otherwise goes to active mode, the mode of operation changed by in person or remotely. If any interruption occurred in any side of the door, then the IR sensor senses the signals and SMS sends to the microcontroller. The controller issues the message about the place of the vehicle to the car owner or authorized person. When send SMS to the controller, issues the control signals to the engine motor. Engine motor speeds are gradually decreases and come to the off place. After that all the doors locked. To open the door or restart the engine, authorized person needs to enter the passwords. In this method, tracking of vehicle place easy and doors locked automatically, thereby thief cannot get away from the car. It consists the power supply section, keyboard, GSM, GPS, microcontroller, MAX232driver, relay driver, IR Transmitter, IR receiver, LCD and door a full-wave rectifier comprising diodes D1

through D4, filtered by capacitor C1 and regulated by ICs 7812 (IC2) and 7805 (IC3). Capacitor C2 bypasses the ripples present in the regulated supply. LED1 acts as the power indicator and R1 limits the current through LED1.

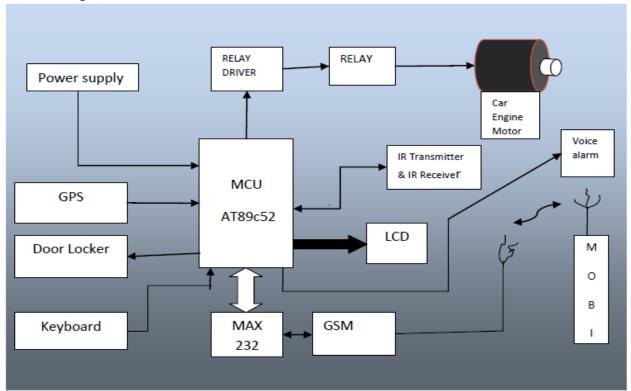


Fig.1. Block diagram of Vehicle tracking and locking system based on GSM and GPS

The circuit diagram of the vehicle tracking and locking embedded system using GPS and GSM technology is shown in Fig.1.The compact circuitry is built around Atmel AT89C52 microcontroller. The AT89C52 is a low power; high performance CMOS 8- bit microcomputer with 8 kB of Flash programmable and erasable read only memory (PEROM). It has 256 bytes of RAM, 32 input/output (I/O) lines, three 16-bit timers/ counters, a six-vector two-level interrupt architecture a full-duplex serial port, an on-chip oscillator and clock circuit. The system clock also plays a significant role in operation of the microcontroller. An 11.0592MHz quartz crystal connected to pins 18 and 19 provides basic clock to the microcontroller. Power-on reset is provided by the combination of electrolytic capacitor C3 and resistor R1. Port pins P2.0 through P2.7 of the microcontroller are connected to data port pins D0 through D7 of the LCD, respectively. Port pins P0.5, P0.6 and P0.7 of the microcontroller are connected to Register-select (RS), Read / write (RW) and enable (E) pins of the LCD, respectively. All the data is sent to the LCD in ASCII format for display. Only the commands are sent in hex form. Register- select (RS) signal is used to distinguish between data (RS=1) and command (RS=0). Preset RV1 is used to control the contrast of the LCD. Resistor 10k limits the current through the backlight of the LCD. Port pins P3.0 (RXD) and P3.1 (TXD) of the microcontroller are used to interface with the RFID reader through Max232 and GSM Modem are used to interface through Max232. Port pins from P1.0 to P2.7 of the microcontroller are connected to keyboard. The GPS and GSM are used to connect through RXD and TXD pins of the microcontroller for further processing. The port pins of P0.0 to P0.3 are used to connect the 4 IR sensors

for detecting the unauthorized person. Port1.7 is used to connect the alarm through transistor BC547, Pin number P3.3 is used to connect the engine motor. If unauthorized person enter into the car, the IR sensor

Fig.2.Gps Module

sense the signals if any interruption occurs in any side of the door and send to the microcontroller, then the controller issue the message about the location of the vehicle to car owner or authorized person. When send the SMS to controller, issues the control signals to the engine motor. Engine motor speed is gradually decreases and comes to the off position.

CONCLUSION

In this paper, we have proposed a novel method of vehicle tracking and locking systems used to track the theft vehicle by using GPS and GSM technology. This system puts into the sleeping mode vehicle handled by the owner or authorized persons; otherwise goes to active mode. The mode of operations changed by persons or remotely. When the theft identified, the responsible people send SMS to the micro controller, then issue the control signals to stop the engine motor. After that all the doors locked. To open the doors or to restart the engine authorized person needs to enter the passwords. In this method, easily track the vehicle place and doors locked.

REFERENCES

- [1] Chen, H., Chiang, Y. Chang, F., H. Wang, H. (2010). Toward Real-Time Precise Point Positioning: Differential GPS Based on IGS Ultra Rapid Product, SICE Annual Conference, The Grand Hotel, Taipei, Taiwan August 18-21.
- [2] Asaad M. J. Al-Hindawi, Ibraheem Talib, "Experimentally Evaluation of GPS/GSM Based System Design", Journal of Electronic Systems Volume 2 Number 2 June 2012
- [3] Kunal Maurya , Mandeep Singh, Neelu Jain, "Real Time Vehicle Tracking System using GSM and GPS Technology- An Anti-theft Tracking System," International Journal of Electronics and Computer Science Engineering. ISSN 2277-1956/V1N3-1103-1107
- [4] Vikram Kulkarni & Viswaprakash Babu, "embedded smart car security system on face detection", special issue of IJCCT, ISSN(Online):2231-0371, ISSN(Print):0975-7449,volume-3.
- [5] V.Ramya, B. Palaniappan, K. Karthick, "Embedded Controller for Vehicle In-Front Obstacle Detection and Cabin Safety Alert System", International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012.

- [6] Kai-Tai Song, Chih-Chieh Yang, of National Chiao Tung University, Taiwan, "Front Vehicle Tracking Using Scene Analysis", Proceedings of the IEEE International Conference on Mechatronics & Automation 2005.
- [7] Chen Peijiang, Jiang Xuehua, "Design and Implementation of Remote monitoring system based on GSM," vol.42, pp.167-175. 2008. [8] Albert Alexe, R.Ezhilarasie, "Cloud Computing Based Vehicle Tracking Information Systems", ISSN: 2229 4333 (Print) | ISSN: 0976 8491 (Online) IJCST Vol. 2, Iss ue 1, March 2011.