
Scope International Journal of Science, Humanities, Management and Technology. ISSN : 2455-068X

Vol.1 Issue 2 (2015) 36-40. Submitted 24/12/2015. Published 31/12/2015

36 ©2015 Radhika.D et.al. | http://www.sijshmt.com

BEHAVIORAL SYNTHESIS OF ASYNCHRONOUS CIRUIT

Radhika.D, Priyanka.V, V.R.S College of Engineering and Technology,
Sangeetha priya.S, Asst prof, V.R.S College of Engineering and Technology,

Abstract:

 A novel methodology and algorithm for the design of large low-power asynchronous systems are described. The

system is synthesized by a commercial tool as a synchronous circuit, and subsequently converted into an

asynchronous one. The conversion algorithm consists of extracting input and output sets, replacing the storage

elements, identifying fork and join sets, and constructing request and acknowledge networks. A DLAP (Doubly

Latched Asynchronous Pipeline) architecture is employed. The resulting asynchronous circuit can adapt its effective

operating frequency to the supply voltage, facilitating flexible and efficient power management.

Keywords- DLAP, Asynchronous, Latched.

1. INTRODUCTION

 Asynchronous logic has been advocated as a means of reducing power consumption in a number of

situations. Such circuits typically switch only when required or when their inputs change. The power

dissipated by the clock tree of a synchronous circuit is eliminated in asynchronous ones. The clock is

replaced by local handshake signals, which typically require less power than the clock tree. Since

switching power is proportional to the operating frequency, the circuit dissipates less power when the

required throughput is reduced. Adaptive supply voltage can be lowered when speed is not required. Since

power depends quadratically on voltage, the combination of slow-down and adaptive supply yields a cubic

power saving with the reduction of speed. In addition, leakage power, which becomes more significant in

newer process technology, can also be managed by reducing the supply voltage. It is easier to vary supply

voltage in an asynchronous circuit, since there is no need to coordinate simultaneous variation of the clock

frequency. Unfortunately, achieving such ambitious power savings by asynchronous design has proven to

be extremely difficult for designers that are not experts in asynchronous design, because the methodology

for the design of large asynchronous logic systems lags substantially behind that of synchronous circuits.

To assist a designer in his/her attempts to convert a behavior level description of a compute function to be

im- plemented in digital hardware, we have developed an toolbox, which is capable of scheduling and

mapping operations on hardware resources. These operations are currently limited to ALU functions like

multiplication, subtraction, comparison and addition. However, since many computational and signal

processing func- tions consist of only these functions, many of them can be implemented.

2. PROBLEM STATEMENT

 Behavioral synthesis is widely explored in the past, mostly targeting synchronous circuits. Scheduling,

the process of allocating operations to time slots, is a well- known method for behavioral synthesis. A

large number of scheduling algorithms are available, as well as control network topologies. In this paper,

standard scheduling algorithms for synchronous circuits are used, but a new control network is created,

targeting asynchronous circuits. For behavioral synthesis of asynchronous circuits, a number of methods

for scheduling and resource allocation are published. However, these publications do not include the syn-

thesis of the control network. Also, a number of behavioral synthesis methods for asynchronous circuits

including the control network synthesis are published. Distributed controllers for asynchronous scheduled

Scope International Journal of Science, Humanities, Management and Technology. ISSN : 2455-068X

Vol.1 Issue 2 (2015) 36-40. Submitted 24/12/2015. Published 31/12/2015

37 ©2015 Radhika.D et.al. | http://www.sijshmt.com

data flow graphs are proposed, similar to our method, but each distributed controller is specified in a

separate Signal Transition Graph (STG). STG’s are hard to synthesize because they should operate hazard

free. In our method, only a few small STG’s have to be synthesized, which can then be reused to create the

larger distributed controller. De-synchronization is the process of converting a (synthesized) synchronous

circuit to an asynchronous circuit. Although this method does not target high-level synthesis and prevents

resource sharing, the theory of de-synchronization is used in this paper since our method uses scheduling

results for synchronous circuits.

3. BACKGROUD

 A Data Flow Graph (DFG) is a graph of operations, represented by nodes, and data-dependencies

represented by directed edges. Additionally, there are two extra nodes, the source and sink node. Those

are used to represent data- dependencies from and to the environment.

Fig.1. Datapath of FIR3 filter with flip-flop

When an operation processes input data, it depends on the source node, and when the output of an

operation is used by the environment, the sink node depends on this operations. An example is shown in

Figure 1-a, where the DFG of a 3rd order Finite Impulse Response (FIR) filter is depicted. When the data-

dependencies are identified using the DFG, a scheduling algo- rithm can map each operation to a time

slot. Then, operations can be allocated to resources like Multipliers and ALU’s. Each resource can

execute a number of operations from the DFG, but it can only execute one operation per time slot. Each

operation is scheduled on a resource that is able to execute the operation. Data can be saved for more than

one cycle in the flip-flop of a resource, but when the data needs to be saved after a new operation is

executed, a register is used which is also considered a resource. This paper will not go into detail about

scheduling and resource allocation, since well-known algorithms for synchronous circuits are used.Since

the second input to the multiplier is a constant in the FIR, these are hardcoded in the multiplier and not

shown in the datapath. There are a number of requirements which have to be satisfied in order to create a

valid scheduling for the intended synchronous datapath.

4. PROPOSED METHOD

 The controllers are based on the fall-decoupled model from. This model is live and flow-equivalent to

synchronous circuits. However, this model does not allow hardware reuse, so a new model is created

which allows hardware reuse, but is still live and flow-equivalent to the synchronous scheduling results.

The A+ transition will make latch A transparent, while A− will make latch A opaque. In this model, even

and odd latches alternate. To be able to implement the scheduling results, the Fall- decoupled model has to

be extended to implement resource sharing. For each operand, a separate handshake signal is introduced

Scope International Journal of Science, Humanities, Management and Technology. ISSN : 2455-068X

Vol.1 Issue 2 (2015) 36-40. Submitted 24/12/2015. Published 31/12/2015

38 ©2015 Radhika.D et.al. | http://www.sijshmt.com

unless the data is an input from the environment or a constant, which are available during the entire opera-

tion of the circuit. The communication with the environment should also contain a form of handshaking to

indicate that new input data is available and that the output data is ready. it indicates that all input data is

valid, and when the done signal goes high, it indicates that the output data is available. The signals have to

go low in the same order to reset the handshake signals to the initial state, i.e. it is a 4-phase handshake.

Combining the Fall-decouple model with resource sharing results in the controller model .

Fig.2. The user interface of the scheduling and mapping tool

In this marked graph, each transition is a latch control signal except Start and Done. The letter A, B and C

indicate the input latch control signals for three different resources, while X represents the output latch

control signal for the re- source with input latch A. The numbers associated with the latch control signal

represent the time slot in which the operation is scheduled. If a resource has no operation scheduled for a

certain time slot, the numbers will not be subsequent, but the numbers are always strictly increasing, e.g.

no two operations can be scheduled on one resource at the same time and the order in time is honored by

the marked graph.

Fig.3. Fall decoupled latch controllers

Scope International Journal of Science, Humanities, Management and Technology. ISSN : 2455-068X

Vol.1 Issue 2 (2015) 36-40. Submitted 24/12/2015. Published 31/12/2015

39 ©2015 Radhika.D et.al. | http://www.sijshmt.com

In the rest of this section, we focus on the implementation of the Control Network. Initially, there is only

a token at the positive event of the start signal. To prove that the model is Live, we have to prove that any

directed circuit includes the start signal. The positive event of an odd latch (Xn+) is always fired by an

event of an preceding (An+) or succeeding (Bn-m- where m>= 0) even latch at the same cycle or a lower

cycle; The even latch from the same resource belongs to the same operation, and thus the same cycle. The

negative event from the succeeding even latch (Bn-m-) has to be from the same cycle or a lower cycle,

because the negative event indicates that the data in the odd latch from the previous cycle can be

overwritten, because it is saved in the succeeding even latch. In the synchronous scheduling results, it is

also assumed that previous output data is also available until the end of the next operation.

5. RESULT ANALYSIS

 To test the asynchronous control flow, a number of high-level descriptions were synthesized. The

implemented circuits include a 5th order LWDF low-pass filter and an 18-point IMDCT. The circuits

were scheduled using the List scheduling algorithm. It is assumed that an ALU with two latches and a

MUX has 70% of the delay of an MUL with two latches and a MUX, so during scheduling the ALU was

assigned 7 cycles and the MUL was assigned 10 cycles.

Fig.4. Latency of asynchronous and synchronous LWDF filter with different multiplier latencies

During synthesis, the delay constraints for the ALU was set to 3.5 ns and the delay for the MUL was set

to 5 ns. The circuits were implemented in UMC90 with a gate library produced by the Faraday

corporation. The netlist of the IP-blocks was created using the Technology Mapping function in Petrify

and the layout of the IP-blocks is designed using Cadence Encounter. The IP- blocks are then used to

implement the control network for the scheduling results using our scheduling toolbox. Synopsys Design

Compiler is used to compile the datapath and select delay elements to match the datapath latency. Then,

the datapath, control network and delays are combined in Cadence Encounter and the placement and

routing of the IP-blocks and datapath completes the layout. The delay of the data operations were

distributed over the latch delay elements instead of using an extra delay element.

CONCLUSION

In this paper we have presented a toolbox for the automatic generation of asyn- chronous circuits starting

from van data flow graph description. The toolbox con- sists of a scheduling and code generation tool.

Scope International Journal of Science, Humanities, Management and Technology. ISSN : 2455-068X

Vol.1 Issue 2 (2015) 36-40. Submitted 24/12/2015. Published 31/12/2015

40 ©2015 Radhika.D et.al. | http://www.sijshmt.com

We use traditional scheduling al- gorithms as for synchronous circuits, but have replaced the implied

synchronous controller for an asynchronous distributed control network. We have also pre- sented an

asynchronous distributed control network based which based upon a number of pre-designed and

optimized IP-blocks. More importantly, the design asynchronous digital circuits has become a lot easier,

since our high level synthesis toolbox automatically generates asynchronous circuit implementations of a

given set of data flow graphs. But also, our toolbox is capable to synthesize large and very large complex

circuits. To our knowledge, this was not possible before.

REFERENCES

1. Bachman, B., Zheng, H., Myers, C.: Architectural synthesis of timed asynchronous systems. In:

International Conference on Computer Design, ICCD 1999, pp. 354–363 (1999)

2. Blunno, I., Cortadella, J., Kondratyev, A., Lavagno, L., Lwin, K., Sotiriou, C.: Handshake protocols for

de-synchronization. In: Proceedings of 10th International Symposium on Asynchronous Circuits and

Systems, pp. 149–158 (April 2004)

3. Cortadella, J., Badia, R.: An asynchronous architecture model for behavioral synthesis. In: Proceedings

of 3rd European Conference on Design Automation, pp. 307–311 (March 1992)

4. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify: A tool for

manipulating concurrent specifications and synthesis of asynchronous controllers (1996)

5. Hamada, N., Shiga, Y., Saito, H., Yoneda, T., Myers, C., Nanya, T.: A behavioral synthesis method for

asynchronous circuits with bundled-data implementation (tool paper). In: 8th International Conference on

Application of Concurrency to System Design, ACSD 2008, pp. 50–55 (June 2008)

6. Imai, M., Nanya, T.: A novel design method for asynchronous bundled-data transfer circuits

considering characteristics of delay variations. In: 12th IEEE International Symposium on Asynchronous

Circuits and Systems, pp. 10–77 (2006)

7. de Micheli, G.: Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher Education, New

York (1994)

8. Saito, H., Hamada, N., Jindapetch, N., Yoneda, T., Myers, C., Nanya, T.: Scheduling methods for

asynchronous circuits with bundled-data implementations based on the approximation of start times.

IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E90-A, 2790–2799 (2007),

http://portal.acm.org/citation.cfm?id=1521680.1521697

9. Sparsø, J., Furber, S.: Principles of Asynchronous Circuit Design. Kluwer Academic Publishers,

Dordrecht (2001).

http://portal.acm.org/citation.cfm?id=1521680.1521697

